www.gsyw.net > 高阶无穷小运算法则

高阶无穷小运算法则

1. 同高阶无穷小加减.2. 高阶无穷小与冥函数之乘积.3. 高的高阶无穷小与低的高阶无穷小之商.4. 有界函数与高阶无穷小乘积.5. 常数与高阶无穷小乘积.在数学中,微分是对函数的局部变化率的一种线性描述.微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的.设函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内.如果函数的增量Δy = f(x0 + Δx) - f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小.

首先要搞清楚高阶无穷小的定义的一个知识点,即若x→某数,f(x)是g(x)的高阶无穷小,则 称f(x)=o(g(x)),例如:若o(x^2)+o(x^3)=o(x^2) 那等式左边百即为f(x),度等式右边的x^2即为g(x),lim f(x)/g(x)=0其次要明白 o(x^n)表示x^n的高阶无穷小,而

无穷小就是以数零为极限的变量.确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与零无限接近,即f(x)=0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量.例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=1/n是当n→∞时

高阶无穷小的加减法,结果等于较小阶数的无穷小,比如o(x^10)+o(x^5)=o(x^5) 乘除法,结果就是阶数的加减,o(x^10)是可以写成o(x^5)的.

lz的意思是高阶无穷小?

无穷小极限运算法则:有限个无穷小量的和是无穷小量;有限个无穷小量的差是无穷小量;有限个无穷小量的积是无穷小量;有界量与无穷小量的积是无穷小量;无穷大极限运算法则:有限个正(负)无穷大量的和是正(负)无穷大量;有界量与无穷大量的积是无穷大量;有限个无穷大量的积是无穷大量;无穷大量与无穷小

主要的依据是高阶无穷小的定义和极限运算的运算法则.举一个例子: 计算图片中的极限时,根据极限运算的运算法则,可以分成两个极限的式子相加,再根据高阶无穷小的定义,就有图片中等式的最右边了.这样的结果,其实可以直接理解为“高阶无穷小在极限的加减运算中可以略去”

o(x)是x的高阶无穷小,所以当x→0时,o(x)/x=0

比如说1/n是在n→∞时趋于无穷小的 而1/n^2在n→∞时也是趋于无穷小的 但是1/n^2比1/n小得更快 故1/n^2是比1/n更高阶的无穷小 在极限上的应用主要是高阶无穷小在分子上是可以得到结果是为○的

网站地图

All rights reserved Powered by www.gsyw.net

copyright ©right 2010-2021。
www.gsyw.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com