www.gsyw.net > 求导公式大全

求导公式大全

f'(c) = 0 f'(x^n) = nx^(x-1) f'(1/x) = -1/x^2 f'(√x) = 1/2√x f'(x) = 1/x f'(ax) = 1/xa (a为底) f'(a^x) = a^x * a f'(e^x) = e^x f'(sinx) = cosx f'(cosx) = -sinx f'(tanx) = (sec^2)x = 1/(cos^2)x f'(cotx) = -(csc^2)x = -1/(sin^2)x f'(secx) = cesx * tanx f'(cscx) = -cscx

1.y=c(c为常数) y'=0 2.y=x的n次方 y'=nx的(n-1)次方 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax (底数为 a,真数为x) y'=(logae)/x (底数为 a,真数为e)y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 以下

分数求导,结果为0分式求导:结果的分子=原式的分子求导乘以原式的分母-原式的分母求导乘以原式的分子结果的分母=原式的分母的平方.即:对于U/V,有(U/V)'=(U'V-UV')/(V^2)

基本初等函数的导数公式:1 .C'=0(C为常数);2 .(Xn)'=nX(n-1) (n∈Q);3 .(sinX)'=cosX;4 .(cosX)'=-sinX;5 .(aX)'=aXIna (ln为自然对数)特别地,(ex)'=ex6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)'=1/x7 .(tanX)'=1/(cosX)2=(secX)28 .

常用导数公式表如下:c'=0(c为常数)(x^a)'=ax^(a-1),a为常数且a≠0(a^x)'=a^xlna(e^x)'=e^x(logax)'=1/(xlna),a>0且 a≠1(lnx)'=1/x(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1

我借花献佛了~1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2

求导公式c'=0(c为常数)(x^a)'=ax^(a-1),a为常数且a≠0(a^x)'=a^xlna(e^x)'=e^x(logax)'=1/(xlna),a>0且 a≠1(lnx)'=1/x(sinx)'=cosx(cosx)'=-sinx(tanx)'=(secx)^2(secx)'=secxtanx(cotx)'=-(cscx)^2(cscx)'=-csxcotx(arcsinx)'=1/√(1-x^2)(arccosx)'=-1/√(1-x^2)(

1.y=c(c为常数) y'=0 2.y=x^n y'=nx^(n-1) 3.y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.y=arccotx y'=-1/1+x^2

如果y是q的函数,y的导数就是-80/q平方.80为常数,提出来,变成1/q的导数,就是-1/q平方.乘回80就好,如果是对x求导,那就是0了

这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlna y=e^x y'=e^x4.y=logax y'=logae/x y=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=

网站地图

All rights reserved Powered by www.gsyw.net

copyright ©right 2010-2021。
www.gsyw.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com